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Outline

Problem: why are we interested?

Datasets: how do we measure?

Architectures: what is our hypothesis space?
Performance: how do we measure it? How robust is it?
Outlook



Automated sample alignment -- current method

detect loop, pin and by analysis of variance and sum curves

code parallelized ~ run time about 8 seconds on multicore machine
outputs segmented images

models bounding box projection, centroid and rightmost point

E.g. we know at what angle there is projected area minimal and maximal --
useful for efficient raster scanning.

Works most of the time but sometimes fails miserably
o success crucially dependent on good background model
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We sometimes need more accurate models of sample
Image movement ...

e although sample moves on a circle as omega axis changes, its image almost
never does (only if there is just material of refractive index of 1 around it). It
follows much stranger law. Law nonetheless -- one just needs more
parameters to model it ...



This is example of a sample aligned almost perfectly. It's image is moving across many microns ... it is
important to model it well ...
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Taking refractive medium into account
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Slab model

i = arcsin(sin(%)) — B

_ frontxsin(¢ — i)
.YCorr o y - COS(i)

_ _ back=sin(—¢ — i)
Yecorr =Y cos(i)




What we want is system that:

e recognizes different sample components
o crystal, loop, stem, pin, ice, dust, mother liquor
o pixelwise

e works at arbitrary scale

e s fast



But to begin with, we need a benchmark!



Datasets

e \ideo streams recorded during sample alignment
o 73301 alignments, ~65 images in each

e C(Click dataset

o 525312 images with associated clicks
o either clicks during alignments or sample exploration i.e. double clicks
e Semantically segmented dataset

o Pixelwise annotated dataset
o 1248 images in the database



Segmentation Dataset

e pixelwise annotation is costly

o only 1248 images

o notions: ['crystal’, 'loop_inside', 'loop’, 'stem’, 'pin’, 'capillary’, 'ice', ‘foreground’, 'click’]
e can we use cheaper kind of annotation?

o user clicks: ~500K images in the database
o video stream: ~2M images in the database
o images acquired during auto centring using prior, shallow, system (~30K images)



Building an annotated dataset
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U-Net: Convolutional Networks for Biomedical
Image Segmentation

input output - '
image fe{s >|> Seg?,,emamn Olaf Ronneberger, Philipp Fischer, and Thomas Brox
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Network Architecture

Abstract. There is large consent that successful training of deep net-
works requires many thousand annotated training samples. In this pa-
per, we present a network and training strategy that relies on the strong
use of data augmentation to use the available annotated samples more
efficiently. The architecture consists of a contracting path to capture
context and a symmetric expanding path that enables precise localiza-
tion. We show that such a network can be trained end-to-end from very
few images and outperforms the prior best method (a sliding-window
network) on the ISBI challenge for segmentation of neu-
res in electron microscopic stacks. Using the same net-
on transmitted light microscopy images (phase contrast
won the ISBI cell tracking challenge 2015 in these cate-
rge margin. Moreover, the network is fast. Segmentation
image takes less than a second on a recent GPU. The full
m (based on Caffe) and the trained networks are available
.informatik.uni-freiburg.de/people/ronneber/u-net.

e U-net based

O  arXiv:1505.04597
o  arXiv:1611.09326
o  arXiv:1610.02357

§ max pool 2x2
# up-conv 2x2
= conv 1x1

Xception: Deep Learning with Depthwise Separable Convolutions
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Abstract as GoogLeNet (Inception V1), later refined as Inception V2

[7], Inception V3 [21], and most recently Inception-ResNet
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Abstract

State-of-the-art approaches for semantic image segmen-
tation are built on Convolutional Neural Networks (CNNs).
The typical segmentation architecture is composed of (a)
a downsampling path responsible for extracting coarse
mantic features, followed by (b) an upsampling path trained
1o recover the input image resolution at the output of the
model and, optionally, (c) a post-processing module (e.g.
Conditional Random Fields) to refine the model predictions.

Recently, a new CNN architecture, Densely Connected
Convolutional Networks (DenseNets), has shown excellent
results on image classification tasks. The idea of DenseNets
is based on the observation that if each layer is directly con-
nected to every other layer in a feed-forward fashion then
the network will be more accurate and easier to train.

In this paper; we extend DenseNets o deal with the prob-
lem of semantic We achieve s '
results on urban scene benchmark datasets such as CamVid
and Gatech, without any further post-processing module
nor pretraining. Moreover; due to smart construction of
the model, our approach has much less parameters than
currently published best entries for these datasets. Code
10 reproduce the experiments is publicly available
https://github.com/SimJeg/FC-DenseNet
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Figure 1. Diagram of our architecture for semantic segmentation.
Our architecture s built from dense blocks. The diagram is com-
posed of a downsampling path with 2 Transitions Down (TD) and
an upsampling path with 2 Transitions Up (TU). A circle repre-

We present an interpretation of Inception modules in con-
volutional neural networks as being an intermediate step
in-between regular c and the depthwise sej ble
@ lution operation (a depthwise c i followed by
a pointwise convolution). In this light, a depthwise separable
convolution can be understood as an Inception module with
a maximally large number of towers. This observation leads
us to propose a novel deep convolutional neural network
architecture inspired by Inception, where Inception modules
have been replaced with depthwise separable convolutions.
We show that this architecture, dubbed Xception, slightly
outperforms Inception V3 on the ImageNet dataset (which
Inception V3 was designed for), and significantly outper-
forms Inception V3 on a larger image classification dataset
comprising 350 million images and 17,000 classes. Since
the Xception architecture has the same number of param-
eters as Inception V3, the performance gains are not due
to increased capacity but rather to a more efficient use of
model parameters.

[19]. Inception itself was inspired by the earlier Network-
In-Network architecture [!!]. Since its first introduction,
Inception has been one of the best performing family of
models on the ImageNet dataset [1+], as well as internal
datasets in use at Google, in particular JFT [5].

The fundamental building block of Inception-style mod-
els is the Inception module, of which several different ver-
sions exist. In figure | we show the canonical form of an
Inception module, as found in the Inception V3 architec-
ture. An Inception model can be understood as a stack of
such modules. This is a departure from earlier VGG-style
networks which were stacks of simple convolution layers.

‘While Inception modules are conceptually similar to con-
volutions (they are convolutional feature extractors), they
empirically appear to be capable of learning richer repre-
sentations with less p
how do they differ froi
strategies come after I

1.1. The Inception |



https://arxiv.org/abs/1610.02357v3

Training

TensorFlow used through Keras

Optimization algorithm is RMSProp, with initial learning rate of 0.001

Training for 70 epochs. Each epoch exposes ~10000 sample images

Dynamic learning rate decay, Reducing learning rate by factor of 2 after 3 epoch without drop in validation loss
Regularization Dropout of 0.2 after every layer, weight decay of 1e-4

Heavy data augmentation
o random flips and transpositions
o random affine transforms (shift, shear, zoom, rotation)
o random channel swaps and brightness modification
o random background swaps (PX2A backgrounds at different illumination conditions, default PX1 beckgrounds)

e 2 xNVIDIARTX 6000 (24 GB RAM)

e  Mixed precision used during training for 3x speed up
o 800 ms per batch
o ~8 hours for model to converge



Data augmentation




Data augmentation
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Training -- learning curves

Training and validation loss
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Training (do we actually need more images?)

Training and validation loss
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Loss function and Metrics

=

Focal loss (arXiv:1708.02002)
Binary Intersection over Union as metrics

» True positive overlap (loU) requirement (from 0.5 to 0.95)

loU=0.5

Loose

I

loU =0.7

Figure credits: Dolldr and Zitnick

loU=0.9
Tight

Focal Loss for Dense Object Detection

Tsung-YiLin Priya Goyal Ross Girshick Kaiming He Piotr Dollar
Facebook AI Research (FAIR)

CE(p) = —log(p)
FL(p) = —(1 — p) " log(p)
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Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 — p)” to the standard cross entropy criterion.
Setting v > 0 reduces the relative loss for well-classified examples
(p > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors. Code is at:

38
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AP time
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Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [28] system from [20].
‘We show variants of RetinaNet with ResNet-50-FPN (blue circles)
and ResNet-101-FPN (orange diamonds) at five scales (400-800
pixels). Ignoring the low-accuracy regime (AP<25), RetinaNet
forms an upper envelope of all current detectors, and an improved
variant (not shown) achieves 40.8 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on
a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 28, 20, 14], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [21].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [26, 27] and SSD [22, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the
state-of-the-art COCO AP of more complex two-stage de-


https://arxiv.org/abs/1708.02002v2

Loss function and Metrics

e FEvaluation on all data




Performance

e 12ms per image in batch mode on NVIDIA RTX 6000

o will be slower on CPU but still near real time
e robust with respect to orientation and scale

input image prediction ground truth
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e 12ms per image in batch mode on NVIDIA RTX 6000

o will be slower on CPU but still near real time
e robust with respect to orientation and scale

input image prediction ground truth




Outlook

e Bigger and better dataset
o Please, please send me your backgrounds

e Deploying on PX2 and PX1
e Deploying at other sites

e Use for better alignment of samples
o more accurate models of sample image movement as function of orientation require more than
just three clicks

e Use for automated and accurate sample reorientation for multi orientation
experiments



